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ABSTRACT 
A signifcant drawback of text passwords for end-user authenti-
cation is password reuse. We propose a novel approach to detect 
password reuse by leveraging gaze as well as typing behavior and 
study its accuracy. We collected gaze and typing behavior from 
49 users while creating accounts for 1) a webmail client and 2) a 
news website. While most participants came up with a new pass-
word, 32% reported having reused an old password when setting 
up their accounts. We then compared diferent ML models to detect 
password reuse from the collected data. Our models achieve an ac-
curacy of up to 87.7% in detecting password reuse from gaze, 75.8% 
accuracy from typing, and 88.75% when considering both types 
of behavior. We demonstrate that using gaze, password reuse can 
already be detected during the registration process, before users 
entered their password. Our work paves the road for developing 
novel interventions to prevent password reuse. 

CCS CONCEPTS 
• Security and privacy → Usability in security and privacy. 
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1 INTRODUCTION 
After more than six decades, passwords remain a ubiquitous ap-
proach to authentication. While their end has been repeatedly pre-
dicted and other forms of authentication, such as fngerprint, facial 
recognition, and behavioral biometrics, have gained substantial pop-
ularity we are far from getting rid of passwords anytime soon [8]. 
The main reason is that passwords currently present a Pareto equi-
librium between usability, security, and administrability [11], i.e. 
there is no other mechanisms providing an equally good trade-of 
between the efort required for implementation, ease of administra-
tion (e.g., reset / changing credentials), ease of use, and security. 

At the same time, as a result of still having to remember too 
many and too complex passwords, users develop coping strategies 
(using simple passwords, writing down passwords) of which many 
compromise security. A particularly problematic strategy is the 
reuse of passwords. One reason is that if a reused password is 
leaked, attackers can easily gain access to other accounts of the 
user for which the same password is being used [23]. 

Having recognized this issue, both researchers and practitioners 
worked towards solutions. One popular approach is password man-
agers. However, a substantial number of users are hesitant to use 
such password managers: a recent survey1 ran by PasswordMan-
ager.com and YouGov among 1280 US American citizens showed 

1Password Manager Survey: https://www.passwordmanager.com/password-manager-
trust-survey/ 

https://orcid.org/0000-0002-8895-4997
https://orcid.org/0000-0001-8507-2510
https://orcid.org/0000-0002-5870-1120
https://orcid.org/0000-0002-0013-715X
https://orcid.org/0000-0001-7051-5200
https://orcid.org/0000-0001-8354-2195
https://doi.org/10.1145/3491102.3517531
https://doi.org/10.1145/3491102.3517531
https://www.passwordmanager.com/password-manager-trust-survey/
https://www.passwordmanager.com/password-manager-trust-survey/
https://ager.com
mailto:permissions@acm.org


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Y.Abdrabou, et al. 

Figure 1: We investigate an approach to identify whether a 
user reuses a prior password during the registration process.
In particular, we analyze eye movement and keystroke data 
while a user creates a password (1). We infer whether the 
user created a new password or reused an old one from the 
behavioral data only, without the need to know the actual 
password. The approach can serve as a basis for interven-
tions to support users in creating more secure passwords (2). 

 

that almost two thirds of participants do not trust password man-
agers. Furthermore, prior work also showed that password man-
agers not necessarily solve the issue, as a substantial number of 
password manager users still reuse passwords [39]. 

Preventing people from reusing passwords is a challenging task 
for several reasons: First, it requires knowledge about whether or 
not a user is reusing a password. One approach is comparing the just 
created password to a database of known, breached passwords. Yet, 
this does not prevent cases in which users are reusing a password 
that has, so far, not been leaked. Another approach is comparing 
all passwords in use by a person – this becomes possible as people 
are using a service to centrally manage their passwords (e.g., the 
aforementioned browser-based or standalone password managers). 
Such analyses are ofered, as part of Google’s password checkup2 

or as features of common password managers, such as LastPass’s 
Security Challenge3. The drawback, again, is that a substantial 
number of people are not using password managers and post-hoc 
alerts on password breaches are often ignored by many users [49]. 
Furthermore, convincing people to post-hoc change their password 
is not easy. Prior work showed that even in cases where their 
passwords were verifably breached, only 13% of users changed 
their passwords in the three months following the breach [10]. 

To overcome the aforementioned issues, we explore a novel ap-
proach to detect the password reuse based on sensing physiological 
user information. In particular, we assess users’ gaze to infer the 
reuse of passwords (a) independent of people’s password history, 
(b) without access to the actual password, and (c) already during 
the password creation process. Our approach is based on the as-
sumption that cognition and behavior are diferent when reusing or 
creating a new password. For instance, users might "think harder" 
about a new password (which would afect fxations) and be re-
quired to direct their gaze to the input device more often, due to 
not having developed a motor memory of the password as a result 
of frequent use (which would afect the gaze path). 

2Google Security Checkup: https://passwords.google.com/ 
3LastPass Security Challenge: http://blog.lastpass.com/2016/06/protecting-lastpass-
users-from-password-reuse/ 

To investigate this concept, we collected data on gaze behavior 
and keystroke dynamics from 49 participants. In particular, we 
asked participants to create passwords for two types of accounts 
(a news website and a webmail client), protecting data of diferent 
sensitivity. We did not log participants’ passwords, but asked them 
post-hoc, whether or not they reused any passwords. Similar to 
prior work, participants in about 30% of cases reused passwords. 

Based on the collected data, we built prediction models using 
diferent machine learning classifers. More specifcally, we look 
at the diferent phases of the password registration process – (1) 
preparing for the registration (orientation), (2) entering the login 
/ ID (identifcation), (3) entering the password (password), and (4) 
confrming the password (confrmation) – and analyze users’ eye 
gaze during those phases as well as calculate prediction accuracy. 

Our results show that by analyzing typing behavior only, an 
accuracy of up to 76% can be achieved, which is similar to accuracy 
in the literature. Predictions based on gaze increase the accuracy 
up to 88%. We also found that using gaze we can assess password 
reuse before users enter the password with an accuracy of 86%. 
Contribution Statement. The contribution of our work is twofold. 
Firstly, we lay out and investigate the novel concept of assessing 
password reuse based on gaze data. Secondly, we provide an in-
depth analysis of the approach. In particular, we (a) provide a com-
parison of gaze to other behavior data commonly available during 
password creation (that is typing behavior) and (b) analyze the be-
havior of users in the diferent phases of the password registration 
process as well as the possibility to predict password reuse during 
these phases using a Machine Learning-based approach. 
Eye tracking is increasingly fnding its way into users’ everyday life 
and the value of (real-time) information on users’ gaze behavior has 
been recognized by the usable security community [29]. Hence, we 
believe the research community as well as practitioners can beneft 
from our work in several ways. We envision that our approach can 
inspire researchers and designers to come up with novel concepts 
that better address password reuse. We see a particular potential 
of our approach in its independence from the authentication inter-
face, in contrast to existing techniques where users have to enter 
their password frst for it to be assessed. Our approach does not 
require any knowledge about the actual password, hence minimiz-
ing the attack surface. Furthermore, concepts can be implemented 
in a technology-independent way. For example, by using a mobile 
eye tracker, the system could detect password reuse on arbitrary 
devices, such as laptops, tablets, smartphones, or other surfaces. 
Interventions educating the user or helping them compose a better, 
unique password could be provided to the user via a smart watch or 
AR interface. Another strength is that through our concept of using 
gaze behavior as a means to detect password reuse, it will become 
feasible to recognize password reuse instantly and, in some cases, 
even before entering the password. This is not possible using key-
stroke dynamics. In this way, chances can be increased that users 
follow recommendations of not reusing passwords – compared to 
many current approaches hinting at password reuse post-hoc. 

2 RELATED WORK 
Our work draws from prior work on users’ password habits and 
work on typing and gaze behavior in security contexts. 

https://passwords.google.com/
http://blog.lastpass.com/2016/06/protecting-lastpass-users-from-password-reuse/
http://blog.lastpass.com/2016/06/protecting-lastpass-users-from-password-reuse/
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2.1 Users’ Passwords Habits 
People have on average 80 accounts for which they use 3.5 pass-
words. This makes password memorability challenging [23]. Coping 
strategies are choosing easy to remember passwords (e.g., ’pass-
word’ or ’123456’), reusing passwords, and writing down passwords. 
According to a survey by Google, 65% of users reuse passwords for 
some or all of their accounts4. Hence, the community focused on 
better understanding user behavior regarding password reuse and 
concepts to mitigate such behavior. 

Wash et al. have studied users’ password reuse behavior [52]. 
The authors created a Web browser plugin to collect user passwords 
across frequently used websites. Their results showed that people 
reuse strong passwords more frequently across diferent websites. 
Pearman et al. conducted an in-situ study to understand users’ 
password managing behavior [38]. The authors found that the larger 
the number of accounts a user has, the higher the chances are that 
they reuse parts or all of their passwords across their accounts. This 
was also confrmed by another study done in 2006 by Florencio et al. 
[20]. Here, the authors assessed the average number of passwords 
and accounts users have and conducted a large scale study over 3 
months to understand how many passwords users type per day, how 
often passwords are shared across sites, and how often users forget 
passwords. Findings show that on average participants have 6.5 
passwords, each of which is shared across 3.9 diferent sites. In 2011, 
Campbell et al. [14] investigated the impact of imposing restrictive 
password composition rules on password choices made by users, 
such as requiring a minimum number of special or upper and lower 
case characters. They found that imposing password policies had a 
positive afect on password reuse, i.e. less people reused passwords 
if policies were enforced. The same was confrmed by Abbott et al., 
[1] in a study involving several US Universities. They found that 
stricter password policies led to a lower rate in reused passwords. 

Researchers looked at users behavior when registering and using 
passwords. Shay et al. [46] show that more than half of participants 
modify an old password or reuse a password when signing up. Von 
Zezschwitz et al. [51] found through user interviews that 45% of 
users reuse the exact passwords. Hanamsagar et al. [23] found that 
after registration, participants 98% of the time reused the same 
passwords and in 2% of cases modifed them. Data was collected 
using a Chrom extension, capturing passwords upon each attempt. 

Reusing passwords can become a considerable threat for users as 
attackers get access to the server on which the password or a hash 
thereof is stored. As a result, attackers may use this information 
to impersonate the user for getting access to another account [23]. 
Prior work has investigated approaches to address this from a 
system perspective. For example, Das et al. [17] show how client-
side password hashing can be used to generate unique passwords 
for diferent websites, thus helping mitigate the risk of password 
reuse. In addition, some systems enforce that passwords are not 
used beyond a certain time span, require minimum password length, 
or do not accept a password containing a sub string of a blacklisted 
password [45]. In the same direction, Seitz et al. suggested using 
dynamic password policies which adjust the password policy if a 
system detects a password that could be widely used [44]. 

4Google Survey: https://services.google.com/fh/fles/blogs/google_security_ 
infographic.pdf 

Another counter-measure for password reuse is two- or multi-
factor authentication. These solutions accept that passwords have 
weaknesses and try to mitigate this by requiring users to perform 
additional forms of authentication (e.g., entering a TAN). However, 
this comes at the expense of additional efort each time the user 
seeks to access an account. In contrast, our approach addresses the 
root cause, that is the password being insecure as a result of reuse. 
Rather than adding a burden upon each authentication attempt, 
our approach enables concepts that require additional efort only 
once, that is upon password registration. Note, that generally our 
approach can also be combined with multi-factor authentication. 
The result is that the password factor becomes stronger. 

2.2 Gaze and Typing Behavior 
Prior research looked into how knowledge on users’ behavior can 
serve to enhance security mechanisms. We will particularly review 
work on typing and gaze behavior. 

Much of prior work on typing behavior was motivated by the 
endeavor of building new authentication mechanisms based on be-
havioral biometrics. An early example is the work of Monrose et al. 
[36]. The authors showed that the way people type on a keyboard 
can be used to identify them. In particular, the authors identifed 
latency between keystrokes, keystroke pressing duration, fnger 
position on the keyboard and applied pressure on the keys as suit-
able features to build a classifer, based on which a user can be 
predicted. Buch et al. [13] looked at how users can be authenticated 
while writing longer texts, comparing copying text and entering 
free text. Similarly, Tappert et al. [48] built an authentication sys-
tem based on free text entry, comparing diferent lengths entered 
on both laptop and desktop computers. The results suggest that 
the keyboard afects the classifcation accuracy. Hereby, typing on 
desktop keyboards led to a higher accuracy compared to laptops. 
Also the keyboard layout was shown to have a strong impact on 
typing behavior. Researchers compared diferent keyboards and 
languages [6, 7, 22, 35]. 

More recently, gaze behavior has moved into the focus of re-
search. An ever-increasing number of mobile devices and laptops 
are being equipped with eye trackers [29]. Research showed how 
gaze behavior can be leveraged in diferent ways, for example, to 
detect personality traits [26] and to measure cognitive load [25]. At 
the same time, gaze has also been used for continuous verifcation 
[4, 16, 53] and for implicit identifcation [9, 15, 50]. In 2018, Katsini 
et al. [30], investigated users’ visual behavior and how it relates 
to the strength of the created picture passwords. The authors used 
cognitive style theories to interpret their results. They show that 
users with diferent cognitive styles followed diferent patterns of 
visual behavior, afecting the strength of the created passwords. 
The fndings introduce a new perspective for improving password 
strength in graphical user authentication. Furthermore, the authors 
looked at whether the strength of user-created graphical passwords 
can be estimated based on eye gaze behavior during password com-
position [31]. They analyzed unique fxations per area of interest 
(AOI) and the total fxation duration per AOI. Their results revealed 
a strong positive correlation between the strength of the passwords 
and the mentioned gaze features. 

https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
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Abdrabou et al. showed that creating strong passwords increases 
users‘ cognitive load, refected in users‘ pupil diameter [2]. They 
followed up by showing that gaze behavior can indicate password 
strength without revealing the actual password [3]. In both studies, 
participants created 12 weak and 12 strong passwords and entered 
half of them on a smartphone and the other half on a laptop. 

2.3 Summary 
From prior work we learn that password reuse is still a major chal-
lenge in usable security research. There are several reasons for this. 
Firstly, detecting password reuse is difcult. If a system has access 
to users’ passwords, reused passwords can be detected by compar-
ing them to corpus of leaked passwords or to other passwords of 
the user. Secondly, when designing concepts for password reuse 
mitigation, the time of the intervention plays an important role 
as, when being asked at a later point in time, people are rather 
unwilling to change their password [23]. We conclude, that being 
able to know as early as possible that users are about to reuse a 
password can be valuable when designing mitigation concepts. 

Of particular interest is prior research that tried to infer password 
reuse from keystroke dynamics [28], achieving an accuracy of up 
to 81.71%. At the same time, prior work showed that the keyboard 
layout has a considerable infuence on accuracy, suggesting that 
using other modalities might further increase the accuracy and the 
time at which a reasonable prediction can be made as well as enable 
novel opportunities for interventions. In addition, prior work has 
shown that gaze behavior difers between weak and strong graphi-
cal and text-based passwords. This led us to assume that reusing 
passwords might equally be refected in users’ gaze behavior. 

Next, we will lay out the concept for using gaze as a means 
to detect reuse of text-based passwords and discuss study design 
considerations. We then present a proof-of-concept implementation 
and evaluation. To compare our work to prior research, we included 
detection password reuse from keystroke dynamics as a baseline. 

3 CONCEPT AND RESEARCH QUESTIONS 
We explore the concept of identifying the reuse of text-based pass-
words from gaze and typing behavior. The objective of our work 
is (1) to improve state-of-the-art by showing that the use of gaze 
can enhance the prediction accuracy, (2) to investigate how the pre-
diction accuracy changes across diferent phases of the password 
creation process, and (3) to understand how the sensitivity of the 
data being protected by the passwords infuences the approach. 

We frst provide background information on eye gaze analysis. 
Then we explain the diferent steps of the password creation process. 
Finally, we present the main research questions driving our work. 

3.1 Gaze Behavior Analysis 
Eye tracking research showed that from gaze, information can be 
derived on the user’s state, intentions, and behavior. We explain 
how, based on diferent metrics, password reuse might be inferred. 

Eye tracking provides information on where the user looks in 
the form of gaze points (fxations) and the transition between these 
(saccades). Fixations might provide valuable hints as to whether or 
not people are reusing passwords. The reason is that when reusing 
passwords, people can likely draw from motor memory (i.e. they 

Figure 2: Phases of password registration: People frst get fa-
miliar with the registration interface, then provide their ID 
and enter the password, and fnally confrm their password. 
In parallel, they refect on the password. 

Figure 3: Study Setup: Participants were asked to register for 
two web services on a laptop. We logged keystroke dynamics 
and gaze using an eye tracker. 

know without looking how to enter the password). As a result, one 
can expect that people reusing a password fxate less on the input 
device (keyboard fxation count). Furthermore, the need to think 
about a new password is likely to result in a longer average fxation 
duration (fxation duration / average fxation duration) similar to 
literature where Katsini et al. found that users fxate longer while 
creating strong passwords [30]. Closely related is the distribution 
of fxations. We expect that users might, while trying to come up 
with a new password, diferently distribute their gaze on the screen, 
resulting in longer/shorter saccades (saccadic length / average sac-
cadic length) and in more/less time spent on transitioning between 
fxations (saccadic duration / average saccadic duration). In addi-
tion, we defne two areas of interest (AOI): the screen with the 
authentication interface and the input device (here a keyboard). 

3.2 Phases of Password Creation 
One important aspect of our work is when a system could pre-
dict password reuse based on gaze data. To investigate this, we 
decompose the password registration process: 

Orientation Phase (O Phase) The authentication process be-
gins with a phase of orientation, where the user is exposed 
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to the authentication interface. During this phase, the user 
not only gets familiar with the interface, but might already 
start to think about the password they will use. This phase 
begins when the authentication interface is displayed, and 
ends when the user begins to enter their ID. 

Identifcation Phase (ID Phase) In the second phase, the user 
enters their user ID, which can be a user name or email ad-
dress. Users might still continue to think about their pass-
word while they are already entering their identifcation 
information. The phase begins with the frst keystroke of the 
user, as they start entering their ID and ends as the cursor is 
moved to the password feld. 

Password Phase (P Phase) In this phase, the user enters the 
password they thought about. It begins as the cursor is moved 
into the password feld and ends as the user moves the cursor 
to the password confrmation feld. 

Confrmation Phase (C Phase) In the fnal phase, the user 
re-enters the password. This phase begins as the cursor is 
moved to the password confrmation feld and ends as the 
user moves the cursor to the register button. 

Figure 2 depicts the process. Note that users might have diferent 
strategies of when they think about the password they want to 
use. Whereas some users might think about the password already 
during the orientation phase, others might do so only after they 
entered their ID. Also, this refection might span across multiple 
phases and it could be that users even during the identifcation 
phase think about the password. 

3.3 Research Questions 
Prior work used keystroke dynamics to detect if a password entered 
is new or reused [28]. We hypothesize that physiological signals 
better indicate password reuse. Hence, the frst driving research 
question is: How well can we predict the reuse passwords from gaze 
behavior, keystroke dynamics, or both (RQ1)? We investigate the 
best gaze and typing features refecting password reuse. 

Second, we expect the sensitivity of protected data to play a role, 
resulting in the second driving question: Is password reuse behavior 
diferent as passwords protect data with a diferent degree of sensitivity 
(RQ2)? We compare behavior while creating a password for 1) a 
webmail client and 2) a customer account for a news website. 

4 DATA COLLECTION 
We conducted a data collection study in which we recorded users’ 
gaze and typing behavior while creating passwords for two fctitious 
accounts, protecting data of diferent sensitivity. 

4.1 Study Design Considerations 
Our study design was driven by a number of considerations, most 
importantly how to observe natural user behavior, how to preserve 
privacy by not storing users’ passwords, and how to minimize 
infuences from the hardware. 

Observing Natural User Behavior Haque et al. [24] showed 
the sensitivity of the data being protected by a password to 
have an infuence on password choice. Participants create 
shorter and less secure password when registering a pass-
word for a website protecting less sensitive data. As a result, 

we followed common practice from the literature [2, 3], in-
vestigating both cases where users were to chose passwords 
protecting a web mail account (more sensitive data) and a 
news website account (less sensitive data). 

Password Privacy Our study had two objectives regarding 
password use: (a) ensuring users chose reasonable passwords 
they could remember and (b) not storing the actual pass-
words (which would be necessary for password verifcation). 
To address this we only store password characteristics. For 
example, as users chose A!3, we would store the following in-
formation <upper case letter><special character><digit>. We 
used this information later to verify whether the re-entered 
password matched those characteristics. The trade-of is that 
we could not exactly verify the password. However, as this 
was not the purpose of this approach, we prioritized privacy. 

Infuence of Hardware Prior work on keystroke dynamics 
showed that the keyboard hardware has an infuence on user 
behavior [43]. Hence, we decided to collect data from all 
participants using the same hardware and setup. 

4.2 Study Design and Apparatus 
We designed a within-subjects study with one independent variable 
(authentication interface), resulting in two conditions: 1) Webmail 
Client – a web-based authentication interface, meant to protect 
sensitive, personal email data. The interface resembled the web-
mail client of our University. 2) News Website – a web-based au-
thentication interface, protecting less sensitive data. The interface 
resembled the authentication interface of a popular regional news 
website (see Figure 4). 

All participants experienced both conditions in a counter-balanced 
order. We measured 8 dependent variables: duration for the pass-
word registration process, gaze metrics, keyboard metrics, time 
spent on each form feld, password characteristics, and perceived 
password memorability. We did not store the raw password, but 
instead its length and the characteristics of each character, i.e., 
whether it was lowercase, uppercase, a number, or a symbol). For 
the apparatus we used a Lenovo Yoga 900s 12ISK laptop with a 12,5" 
screen (3200 × 1800 pixels) and of-the-shelf Tobii 4C eye tracker 
with a framerate of 90 Hz. We also implemented a demographics 
questionnaire at the end of the study. The questionnaire had ques-
tions about, age, gender, background, profession, experience with 
eye tracking and experience with IT security. 

4.3 Study Setting, Procedure and Recruiting 
We setup a booth in a quiet area of one of our local university’s 
cafeteria (Figure 3). We approached people on campus and asked 
them to participate in the study. When participants agreed, we 
went with them to the cafeteria and asked them to sit at the booth. 
Participants were facing the booth wall to eliminate the infuence 
of people in the vicinity. 

We frst asked participants to fll in a brief demographic question-
naire and a consent form. They were then told that we conducted a 
usability test of a slightly updated version of the University’s web 
mail’s password registration interface. Hereby, we specifcally told 
them that the interface was not connected to the actual web mail 
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Figure 4: We rebuilt the webmail registration interface of the local University (left) and of a regional news website (right) to 
investigate diferences in user behavior when creating passwords for accounts with more and less sensitive data. 

system of the University. Furthermore, we explained that we com-
pared it to the password registration interface of a regional news 
website. We also told them that we recorded gaze data to identify 
issues with the interface. After that, the eye tracker was calibrated 
using Tobii’s 5 point calibration. Participants were asked to register 
an account for both websites. Participants were told that we did not 
store their passwords but that they had to remember them as they 
would be asked to later sign on with them. Participants were then 
shown the frst registration page with three felds – one each for 
ID, password and password confrmation – and a register button 
(Figure 4). After participants had flled in the ID and passwords, 
they clicked the register button and were directed to the second 
interface, following the same procedure. Afterwards, participants 
were asked for each of the passwords how memorable they thought 
it was (5-Point Likert scale; 1=not memorable at all; 5=very memo-
rable). Then, they were asked to log into both interfaces again in the 
order of registration. Finally, we wanted to know from participants 
whether they reused a password or created a new one. At the end 
of the study, we explained participants the true objective of the 
study and asked them to explain their strategy behind creating 
the passwords. On this occasion we were also able to clarify what 
password reuse means, if needed. 

The experiment took around 10 minutes and participants were 
compensated with chocolates/treats. The study complied with our 
university’s ethics requirements. 

4.4 Limitations 
We acknowledge the following limitation. Firstly, we cannot verify 
whether participants truthfully answered the questions regarding 
password reuse. Participants might have lied about non-compliant, 
insecure behavior. We tried to minimize any such infuence by run-
ning the study in a completely anonymized way where no personal 
information was collected so as to establish trust. Furthermore, the 
percentage of reused passwords aligns with the literature, suggest-
ing that participants mostly answered in a truthful way. Secondly, 
while the number of participants is in line with much similar prior 
work, we acknowledge the rather small size of our sample. 

5 FEATURE EXTRACTION AND 
CLASSIFICATION 

We describe our step-by-step process to evaluate eye gaze and key-
stroke dynamics for password reuse detection. First, we analyzed 
the collected passwords’ characteristics and evaluated the efect of 
password type on password characteristics. Second, we extracted 
keystroke and gaze features required for classifcation and tested 
their statistical signifcance for the two types of passwords. Third, 
we built and tested diferent classifers based on these features. We 
distinguish two categories: new and reused passwords. All features 
below were extracted for both categories. 

5.1 Feature Extraction 
We extracted a feature set describing keystroke dynamics and gaze 
behavior from the collected data in addition to password character-
istics. We also analyze perceived password memorability. 

5.1.1 Password Characteristics. We extracted the following pass-
word characteristics: password length, number of upper-case letters, 
number of lower-case letters, number of digits, and number of sym-
bols. We also tracked the study duration, i.e. time in seconds from 
when the UI was shown until the ‘Register’ button was pressed. 

5.1.2 Gaze Features. From the collected raw gaze data (X and Y 
positions on the screen), we derived the following characteristic 
eye movement features [27, 41]: 

Fixations Count: Number of fxations performed during task. 
Fixation Duration: Time for which users dwelled with their 

eyes on the laptop screen as well as on the keyboard. 
Saccadic Length: Euclidian distance between two consecutive 

fxations with the eyes, determined in pixel. 
Saccadic Duration: Duration between consecutive fxations. 
Screen Fixation Count: Number of fxations on screen. 
Keyboard Fixation Count: Number of fxations on keyboard. 

The features are computed and analysed for each password phase, 
as well as over all phases. 
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5.1.3 Keystroke Dynamics Features. We collected 5 keystroke dy-
namics, informed by the literature [21, 28, 37]. 

Total Duration: Duration for typing email and password in 
milliseconds (not considering password confrmation). 

Password Typing Duration: Time taken by the participant 
to enter the password in milliseconds. 

Password Keystrokes Count: Number of keystrokes needed 
to type the passwords (including insertion, deletion). 

Flight Time: Average latency between key presses in ms. 
Pre-input Time: Time from the moment the interface was 

shown until the frst key was pressed in milliseconds. 

5.2 Classifcation Approach 
The goal of our classifer is to map a feature vector computed from a 
time window of data to one of the classes corresponding to the pass-
word type (new vs reused). We frst built an interface-dependent 
classifer, accounting for data sensitivity (webmail client vs news 
website). The classifer is trained on the data from diferent users 
but on the same interface. We then built an interface-independent 
classifer, not accounting for data sensitivity. 

We used 3 feature sets: 1) keystroke features + password charac-
teristics, 2) gaze features, and 3) both features combined. Keyboard 
and gaze data were saved and synchronized using the timestamp. 

We compared the performance of three classifers: Support Vec-
tor Machines (SVM), decision trees, and random forest, as done by 
Abdrabou et al. when detecting password strength [3]. To optimize 
performance, hyper parameters for each classifer were empirically 
optimized on a small set of values. 

5.2.1 Interface-Dependent Classifier: Webmail Client vs. News Web-
site. To understand how generalizable our approach is across difer-
ent interfaces, we created interface-dependent classifers by training 
the models on all users’ data for each of the two interfaces sepa-
rately. For each of the previously mentioned phases, we created 
one classifer. We implemented a two-fold cross validation. Figure 
5 shows the steps for creating the classifer. We start with cleaning 
the data by removing the data outside our areas of interest (i.e., 
the screen and keyboard). During the pre-processing we assign 
the label ‘new’ or ‘reused’ to each sample, according to the par-
ticipants’ responses. After that we calculate the features for both 
gaze and keystroke dynamics. The collected data is synchronized 
using the timestamp for the analysis. This is followed by assigning 
the data to the 2 folds and running the classifcation. These steps 
are repeated for each phase. At the end, we report the AUC (Area 
Under the Curve) score which measures the ability of a classifer 
to distinguish between the two classes (‘new’ and ‘reused’) and is 
used as a summary of the ROC curve5. 

5.2.2 Interface-Independent Classifier: Both Interfaces. To under-
stand whether a classifer working for interfaces protecting data 
of diferent sensitivity could be built, we created models that were 
independent of the data to be protected – in our case the web mail 
and the news page data. To do so, the classifer is trained on the 
data of all users and both interfaces. We split the data similar to the 
interface-dependent classifer into a training set and a test set. 

5AUC: https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-
learning/ 

6 RESULTS 
In this section, we present and analyze the collected data. 

6.1 Participants 
A total of 52 participants (10 females) were recruited. The study 
ran over two weeks. Participants’ age varied between 17 and 54 
years (M = 25.27; SD = 6.76). 30 participants were students, 10 
academic staf and the remaining 12 administrative staf. Most 
participants stated to be rather inexperienced with IT security (5-
Point Likert scale; 1=no experience at all; 5=strong experience; 
M = 2.23; SD = .35). 23 participants wore glasses. 

6.2 Data Pre-Processing and Overview 
We removed data from 2 participants due to poor calibration quality. 
We lost data from one participant due to technical issues while sav-
ing. Overall we collected 98 passwords, half of which were created 
on the news website interface and the other half on the webmail in-
terface. Table 1 shows the number of the newly created and reused 
password for each interface. As can be seen, participants reuse more 
passwords for the news website than for the webmail client. Par-
ticipants needed on average 52 seconds to create a new password 
for the webmail interface and 42 seconds for the news website. In 
contrast, for the reused passwords, participants needed on average 
38 seconds for the webmail interface and 25 seconds for the news 
website. A Wilcoxon test, revealed statistically signifcant difer-
ences between the study duration for reused and new passwords 
for the news website (Z = −2.85, P = .004) but not for the webmail 
client (P > .05). For both gaze and keystroke data, we sampled data 
at 90 Hz from the eye tracker and from key input events. This led 
to an average of 3149 samples per password, resulting in overall 
340K samples for all participants for both interfaces. 

6.3 New vs. Reused Passwords 
We analyzed and compared cases where passwords were newly 
created or re-used. 

Regarding password memorability, we found a statistically sig-
nifcant diference between reused (M = 4.8; SD = .6) and new 
passwords’ memorability (M = 3.9; SD = 1.1) for the webmail 
client, (Z = −2.226,P = .026). This show that reused passwords 
(at least those protecting sensitive data), are more memorable than 
newly generated ones. Table 2 presents characteristics of passwords 
obtained during the study, and their distribution over conditions. 

No statistically signifcant diferences were found between the 
two interfaces regarding password characteristics (password length, 
number of digits / special characters / upper-case letters). 

Table 3 summarizes fndings regarding keystroke features. Our 
results indicate that participants took more time to think about and 
type new passwords compared to when reusing passwords. This 
includes shorter times when reusing passwords for pre-input time, 
typing duration and fight time. 

Regarding eye movement features, we found several statistically 
signifcant diferences between new and reused passwords (Table 
4). The password type has a signifcant efect on several features for 
both interfaces. Furthermore, it shows that when considering both 
interfaces, for the reused passwords, users gaze was characterized 
by signifcantly shorter fxation times, shorter saccadic duration, 

https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
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Figure 5: ML Classifcation Steps from data preparation until sending the data to the classifer. 

Table 1: Number of new and reused passwords and task completion time. 
Webmail Client News Website 

New Reused New Reused 
Passwords Passwords Passwords Passwords 

Number of Passwords 35 14 31 18 
Task Completion Time 52.28 37.89 42.07 25.99 

Table 2: Wilcoxon signed-rank tests for both new and reuse password features on both interfaces. The results show that there 
is no statistically signifcant diferences for the password characteristics between new and reuse passwords. 

Password Email Interface News Interface Both Interfaces 
Characteristics New Reuse New Reuse New ReuseWilcoxon Wilcoxon Wilcoxon Feature Mean Mean Mean Mean Rank Rank 
Password Length 9.5 10.6 Z=-1.517, P>.05 9.5 10.3 Z=-.573, P>.05 10.4 10.3 Z=-1.154, P>.05 
Upper-case Letters 1 1.1 Z=-.583, P>.05 .6 .6 Z=-.372, P>.05 0.8 0.8 Z=-.655, P>.05 
Digits 3.3 3.2 Z=-.394, P>.05 2 3.3 Z=-1.800, P>.05 3.2 2.7 Z=-.892, P>.05 
Symbols .29 .71 Z=-1.403, P>.05 .3 .1 Z=-1.134, P>.05 0.4 0.3 Z=-.573, P>.05 

Table 3: Wilcoxon signed-rank tests for keystroke features. For Webmail there is a signifcant efect of password type on the 
password typing duration. For the news website the password type had signifcant efects on fight time and thinking time. 

Webmail Client News Website Both Interfaces Keystroke Feature New Reused New Reused New Reused Wilcoxon Wilcoxon Wilcoxon Mean Mean Mean Mean Mean Mean 
Typing Duration 33.7 25.2 Z=-1.664, P >.05 27.5 16.9 Z=-1.764, P >.05 30.8 20.5 Z=-2.711, P=.007 
Password Keystroke Count 16.5 13 Z=-.345, P >.05 13.6 12.3 Z=-.980, P >.05 15.1 12.6 Z=-.841, P >.05 
Password Typing Duration 23 13.7 Z=-2.103, P=.035 15.8 10.2 Z=-1.851, P >.05 19.6 11.8 Z=-3.048, P=.002 
Flight Time 1.7 1.1 Z=-1.852, P >.05 1.3 .9 Z=-2.025, P=.043 1.5 1 Z=-3.160, P=.002 
Thinking Time 14.6 8.5 Z=-1.782, P >.05 7.4 4.2 Z=-3.027, P=.002 11.3 6 Z=-3.586, P<.001 

less fxations, shorter saccades and less fxations on both the screen 
and keyboard. Overall, the many signifcant diferences suggest 
eye movement features to be well suitable to accurately identify 
password reuse. We discuss practical implications in Section 8. 

6.4 Gaze Path 
As a complementary analysis, we visually inspected the eye move-
ments in the form of the gaze path. Figure 6 shows some selected 
examples. We found that participants fxate more often on the 
screen (area 1) and keyboard (area 2) while creating new passwords, 
compared to when entering a reused password. This was indepen-
dent of the interface on which passwords were created. 

6.5 Classifer Performance 
We compared the performance of three diferent models: SVM, ran-
dom forest, and decision trees. We conducted two classifcations: 
phase-based classifcation (i.e. per phase of the password registra-
tion) and multiple phases classifcation. 

6.5.1 Phase-based Classification. We use data from the diferent 
registration phases (cf. Figure 2) to build the model. The phase-based 
model helped us understand how each phase contributes to the 
model. To understand which features are best for our classifcation 
task, we ran the classifer on gaze features only, keystroke features 
only, and both. Random forest and SVM classifers resulted in a 
similar AUC (Area Under the Curve) score. However, SVM resulted 
in a better AUC score in most cases. Hence, the remainder of our 
analysis will focus on and report the SVM results. 

For the interface-dependent classifer, Table 5 shows the overall 
performance of classifcation for each interface for all classifers 
across the diferent phases. For webmail, the AUC is best when 
combining all phases. The highest AUC is 87.73% for gaze features 
and 88.75% for the combination of gaze and keystroke features. This 
means that users‘ behavior is more refected in their gaze behavior 
features than in their typing behavior. Also, gaze features better 
refect users‘ password behavior across the diferent phases. For 
the news website, similar to the webmail client, the best AUC is 
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Table 4: Wilcoxon signed-rank tests for the gaze features. The results show that for both Webmail and the News Website, the 
password type had a signifcant efect on serveral gaze features. 

Gaze Feature New 
Mean 

Webmail Client 
Reused Wilcoxon Mean 

New 
Mean 

News Website 
Reused Wilcoxon Mean 

New 
Mean 

Both Interfaces 
Reused Wilcoxon Mean 

Fixation Duration 28041.9 15728.1 Z=-2.542, P =.011 20143.4 13631.6 Z=-2.330, P =.020 24497.3 14548.7953 Z=-3.964, P <.001 
Avg. Fixation Duration 
Saccadic Duration 

222.8 
20850.4 

203.1 
18704.9 

Z=-1.66, P >.05 
Z=-.471, P >.05 

210.9 
18896.4 

208.8 
10490.1 

Z=-.152, P >.05 
Z=-2.199, P =.028 

219.9 
19988.7 

206.2945 
14084.1108 

Z=-2.375, P =.018 
Z=-2.001, P =.045 

Avg Saccadic Duration 
Fixation Count 

174.6 
2595.8 

257 
1458 

Z=-2.982, P =.003 
Z=-2.542, P =.011 

196.6 
1862.1 

171.1 
1265.7 

Z=-.370, P >.05 
Z=-2.330, P =.020 

186.2 
2266.4 

207.3771 
1349.7500 

Z=-2.618, P =.009 
Z=-3.927, P <.001 

Avg. Fixation Count 
Saccadic Length 
Avg. Saccadic Length 
Screen Fixation Count 

.6 
1677.9 
.4 
2149.5 

.5 
1539 
.5 
1193.9 

Z=-2.982, P =.003 
Z=-.282, P >.05 
Z=-2.982, P =.003 
Z=-2.668, P =.008 

.6 
1436 
.4 
1690.7 

.6 
960.3 
.4 
1122.7 

Z=-1.067, P >.05 
Z=-2.199, P =.028 
Z=-1.067, P>.05 
Z=-2.461, P =.014 

.6 
1574.5 
.4 
1947.7 

.5327 
1213.2813 
.4673 
1153.8437 

Z=-3.385, P =.001 
Z=-2.094, P =.036 
Z=-3.385, P =.001 
Z=-3.843, P <.001 

Keyboard Fixation Count 446.3 264 Z=-1.915, P >.05 173.2 142.9 Z=-1.918, P >.05 318.8 195.9063 Z=-2.786, P =.005 

Reuse Passwords

New Passwords

Webmail

Reuse Passwords

New Passwords

News Website
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Figure 6: Visualization of selected users’ gaze paths, both for the webmail (left) and news website (right) interface: In both cases, 
fxations are primarily focused on the input felds in the middle of the screen. Yet, for cases in which participants created new 
passwords, more transitions between screen and keyboard occur and more fxations are located in the keyboard area. 

achieved when considering gaze features and the combination of 
gaze and keystroke features. The accuracy here is highest in the 
“identifcation phase” (84.56%). Our interpretation of this is that the 
password choice is primarily made during this phase. The keystroke 
features allow for an equally good prediction, but only when consid-
ering all phases. This means that for interfaces protecting sensitive 
content, password reuse is more accurately detected using gaze or 
both gaze/keystroke features during the identifcation phase. 

For the interface-independent classifer, Table 6 shows the overall 
performance of the classifers for all interfaces across the features. 
The highest AUC is achieved for gaze features and both features 
when combining all phases (71.87%). 

6.5.2 Multiple-Phase Classification. This model accumulates all 
information available on users‘ behavior, from the beginning of the 
registration process to a particular phase. The aim of this model is 
to understand which features are best for classifcation. We ran the 
classifer on gaze features only, keystroke features only, and both. 

Random forest and SVM classifers resulted in a similar AUC score. 
However, SVM resulted in a better AUC score in most cases. Hence, 
in the following we will focus on and report the SVM results. 

For the interface-dependent classifer, Table 7 shows the over-
all performance for the classifcation for each interface across all 
classifers for the accumulated phases. For webmail, the AUC is 
best, when all phases are combined. The highest AUC is 87.73% for 
gaze features. However, the model shows a decrease of only 2% for 
considering only the O + ID phase as well as when the O + ID + P 
phases are considered. This means that our model can predict pass-
word reuse in the identifcation phase before the user start typing 
the actual password reasonably well. For the keystroke features, 
the best AUC is still the same as the phase-based classifcation. 
However, looking at the accuracy after each phases along the regis-
tration process, we found a diference in accuracy of 6% across the 
grouped phases. This means that by using the keystroke features 
only, the best accuracy is achieved when the user has clicked ‘reg-
ister’. Finally, for both features combined, the picture was diverse. 
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Table 5: Interface-dependent Classifer: Classifcation Performance per Phase for the Diferent Features (best AUC bold) 

Orientation Identifcation Password Confrmation All 
Email Web-client Phase (O Phase) Phase (ID Phase) Phase (P Phase) Phase (C Phase) Phases 

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 
SVM 64.79 ± 9.50% 55.63 ± 1.51% 74.35 ± 2.12% 62.77 ± 9.46% 70.22 ± 4.78% 48.61 ± 1.39% 80.81 ± 0.67% 61.46 ± 5.21% 87.73 ± 0.23% 77.08 ± 14.58%Gaze Random Forest 72.18 ± 0.76% 55.87 ± 1.75% 67.62 ± 0.03% 56.94 ± 6.94% 81.67 ± 8.14% 61.29 ± 10.93% 81.92 ± 0.44% 55.90 ± 0.35% 83.44 ± 0.35% 61.46 ± 5.21%Features Decision Tree 49.05 ± 0.95% 61.54 ± 10.36% 60.33 ± 0.78% 58.33 ± 8.33% 55.56 ± 5.56% 65.75 ± 17.59% 56.83 ± 0.58% 60.33 ± 0.78% 75.84 ± 1.94% 72.22 ± 2.78% 
SVM - - 53.40 ± 2.48% 52.78 ± 2.78% 66.23 ± 1.42% 49.14 ± 7.48% 54.89 ± 0.26% 50.00 ± 0.00% 63.58 ± 4.02% 68.06 ± 6.94%Keystroke Random Forest - - 61.04 ± 7.34% 50.27 ± 3.04% 69.23 ± 2.10% 66.24 ± 0.43% 75.54 ± 2.40% 50.18 ± 0.18% 75.83 ± 0.10% 68.75 ± 6.25%Features Decision Tree - - 47.64 ± 0.89% 42.91 ± 4.31% 69.23 ± 2.10% 70.75 ± 1.31% 61.83 ± 6.69% 50.90 ± 6.45% 72.16 ± 5.62% 63.11 ± 3.55% 
SVM - - 76.85 ± 1.85% 62.77 ± 9.46% 71.51 ± 5.34% 48.61 ± 1.39% 81.37 ± 1.96% 61.46 ± 5.21% 87.73 ± 0.23% 78.47 ± 15.97%Both Random Forest - - 70.11 ± 0.26% 67.97 ± 4.08% 80.47 ± 8.42% 56.70 ± 9.48% 75.83 ± 0.10% 67.36 ± 4.86% 88.75 ± 0.14% 62.77 ± 9.46%Features Decision Tree - - 55.82 ± 2.51% 58.60 ± 5.29% 56.93 ± 3.25% 57.39 ± 3.72% 54.51 ± 1.74% 57.29 ± 1.04% 74.92 ± 2.86% 72.22 ± 2.78% 

Orientation Identifcation Password Confrmation All 
News Website Phase (O Phase) Phase (ID Phase) Phase Phase (C Phase) Phases 

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 
SVM 67.35 ± 1.97% 37.36 ± 9.80% 84.56 ± 2.74% 74.56 ± 0.44% 77.82 ± 3.69% 67.85 ± 7.36% 60.37 ± 2.33% 51.98 ± 1.98% 77.49 ± 2.67% 60.32 ± 10.32%Gaze Random Forest 48.00 ± 3.13% 52.56 ± 2.56% 78.82 ± 0.15% 63.28 ± 4.18% 75.23 ± 0.40% 60.54 ± 4.59% 63.28 ± 4.55% 61.09 ± 2.00% 73.94 ± 0.53% 55.16 ± 5.16%Features Decision Tree 43.07 ± 0.12% 44.99 ± 1.81% 60.85 ± 1.06% 60.05 ± 0.26% 62.99 ± 6.34% 69.53 ± 6.94% 48.77 ± 9.96% 49.14 ± 4.03% 63.19 ± 0.10% 55.16 ± 5.16% 
SVM - - 73.85 ± 3.92% 73.92 ± 5.04% 54.36 ± 19.07% 76.35 ± 10.62% 72.94 ± 4.68% 56.24 ± 4.25% 74.65 ± 4.72% 66.16 ± 5.67%Keystroke Random Forest - - 73.22 ± 0.21% 64.16 ± 0.52% 67.53 ± 0.30% 71.14 ± 9.95% 72.87 ± 0.14% 59.61 ± 5.07% 80.97 ± 3.99% 62.77 ± 0.87%Features Decision Tree - - 70.22 ± 3.55% 63.51 ± 6.77% 60.92 ± 0.43% 59.59 ± 1.60% 58.91 ± 0.18% 65.81 ± 6.02% 62.68 ± 2.36% 57.28 ± 2.51% 
SVM - - 84.56 ± 2.74% 74.56 ± 0.44% 77.82 ± 3.69% 66.38 ± 5.89% 61.61 ± 4.47% 51.98 ± 1.98% 76.70 ± 1.87% 60.32 ± 10.32%Both Random Forest - - 80.77 ± 1.40% 67.82 ± 0.36% 76.73 ± 2.26% 65.75 ± 5.26% 78.21 ± 2.34% 65.55 ± 1.91% 77.96 ± 1.76% 72.19 ± 4.00%Features Decision Tree - - 64.32 ± 3.14% 61.44 ± 1.65% 63.71 ± 2.37% 68.83 ± 7.64% 73.18 ± 3.74% 58.91 ± 0.18% 63.19 ± 0.10% 55.16 ± 5.16% 

Table 6: Interface-independent Classifer: Classifcation Performance Per Phase for the Diferent Features (best AUC bold). 

Orientation Phase 
(O Phase) 

Identifcation Phase 
(ID Phase) 

Password Phase 
(P Phase) 

Confrmation Phase 
(C Phase) All Phases 

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 

Gaze 
Features 

SVM 
Random Forest 
Decision Tree 

66.27 ± 0.95% 
62.40 ± 1.00% 
52.22 ± 1.04% 

46.91 ± 1.91% 
48.65 ± 2.42% 
52.15 ± 1.27% 

58.12 ± 2.58% 
56.81 ± 0.07% 
52.79 ± 5.73% 

49.59 ± 1.51% 
61.28 ± 1.49% 
56.26 ± 2.25% 

59.28 ± 5.78% 
76.91 ± 1.77% 
59.81 ± 2.58% 

63.95 ± 3.62% 
63.42 ± 15.34% 
56.00 ± 6.09% 

65.64 ± 3.56% 
68.37 ± 1.18% 
52.61 ± 0.42% 

51.19 ± 4.69% 
56.94 ± 0.12% 
53.74 ± 7.62% 

71.87 ± 2.82% 
68.22 ± 0.06% 
61.21 ± 1.53% 

51.84 ± 1.84% 
58.50 ± 0.07% 
57.20 ± 2.48% 

Keystroke 
Features 

SVM 
Random Forest 
Decision Tree 

-
-
-

-
-
-

56.70 ± 0.85% 
62.66 ± 1.63% 
61.77 ± 3.87% 

53.49 ± 3.49% 
57.40 ± 2.16% 
54.23 ± 13.79% 

54.05 ± 0.69% 
57.68 ± 1.29% 
55.75 ± 2.25% 

52.78 ± 2.78% 
61.10 ± 2.76% 
56.06 ± 4.40% 

64.43 ± 1.90% 
59.91 ± 1.82% 
55.90 ± 4.19% 

52.16 ± 1.98% 
49.94 ± 0.06% 
61.93 ± 4.99% 

60.34 ± 0.43% 
69.22 ± 0.49% 
66.28 ± 1.47% 

53.40 ± 3.40% 
61.88 ± 4.35% 
57.80 ± 2.34% 

Both 
Features 

SVM 
Random Forest 
Decision Tree 

-
-
-

-
-
-

58.30 ± 2.41% 
61.15 ± 0.94% 
57.99 ± 4.67% 

51.10 ± 3.02% 
59.88 ± 7.25% 
56.37 ± 4.28% 

59.74 ± 6.27% 
66.89 ± 1.65% 
52.39 ± 1.89% 

63.95 ± 3.62% 
58.77 ± 3.40% 
59.01 ± 5.54% 

65.96 ± 2.84% 
69.13 ± 0.26% 
60.51 ± 5.02% 

51.19 ± 4.69% 
57.46 ± 3.52% 
56.65 ± 8.88% 

71.87 ± 2.82% 
70.73 ± 0.08% 
62.41 ± 3.63% 

51.10 ± 1.10% 
64.03 ± 3.54% 
57.20 ± 2.48% 

For webmail, accuracy continuously increased. Yet, for the news 
website, the highest accuracy was achieved in the identifcation 
phase. In subsequent phases, accuracy difered minimally. 

For the interface-independent classifer, combining the phases did 
not yield a better accuracy compared to phase-based classifcation. 
This indicates that for the interface independent classifer any model 
will lead to a similar accuracy. 

6.5.3 True Positive and True Negative Values. As multiple phase 
classifcation did not afect the true positive and true negative rate, 
we only report values for the phase-based classifcation for the gaze 
features models. The data set was unbalanced. The guessing base-
line (i.e. trivial classifer always guessing majority class) is 71% for 
webmail and 63% for the news website. Our classifers outperform 
the baseline (81.6% for webmail, 74.6% for news website). 

For webmail we found that 32 out of 35 new passwords were 
correctly classifed as new. For the reused passwords, 8 out of the 14 
reuse passwords were correctly classifed. For the news website we 
found that out of the 31 newly generated passwords, 21 passwords 
were correctly classifed as new. Out of the 18 reused passwords, 
15 were correctly classifed as reused. For the interface independent 
classifer, out of the 66 newly generated passwords, 56 were correctly 

classifed as new. Out of the 32 reuse passwords, 12 were correctly 
classifed as reuse. We refect on these results in the discussion. 

6.5.4 Feature Importance. We investigated which features mostly 
contribute to the accuracy of the classifers. We found only small 
diferences between both interfaces and here show the features for 
webmail only. We used SHAP [34], a tool that explain the output of 
a machine learning model by computing the contribution of each 
feature to its prediction. Figure 7 shows the feature importance. 

We observed that for the gaze features, the fxation and regis-
tration duration are mostly contributing (.23 and .14 respectively). 
For the keystroke features, we observed that the overall registra-
tion duration and fight time contributed most to prediction of the 
password category (.09 and .06 respectively). For both features, 
we found that the gaze features have a stronger infuence on the 
model‘s accuracy than the keystroke features. 

6.5.5 Prediction Over Time. Figure 8 visualizes the AUC over time 
for the investigated conditions. Between interfaces, we can see that 
gaze leads to a higher accuracy much faster for webmail, i.e. when 
passwords are created to protect more sensitive data. The prediction 
accuracy for keystrokes is plateauing in the identifcation phase 
(i.e. after about 13 seconds for the news website and 22 seconds for 
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Table 7: Classifcation performance for interface-dependent classifer (multiple phases): Phases represented by O (orientation), 
ID (identifcation), and P (password entry). Best AUC in bold. 

O + ID + P O Phase O + ID Phases All Phases Email Web-client Phases 
AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 

SVM 64.79 ± 9.50% 52.06 ± 2.06% 77.11 ± 3.04% 73.61 ± 1.39% 85.04 ± 5.41% 54.17 ± 4.17% 87.73 ± 0.23% 71.53 ± 9.03%Gaze Random Forest 72.18 ± 0.76% 55.87 ± 1.75% 85.68 ± 5.13% 61.81 ± 0.69% 85.16 ± 2.81% 65.97 ± 3.47% 83.44 ± 0.35% 63.46 ± 2.35%Features Decision Tree 49.05 ± 0.95% 50.00 ± 0.00% 65.22 ± 0.52% 49.92 ± 2.86% 66.07 ± 6.15% 66.07 ± 6.15% 75.84 ± 1.94% 70.32 ± 7.46% 
SVM - - 53.40 ± 2.48% 45.85 ± 1.37% 67.35 ± 1.17% 63.11 ± 3.55% 63.58 ± 4.02% 48.53 ± 1.47%Keystroke Random Forest - - 61.04 ± 7.34% 52.78 ± 2.78% 65.36 ± 0.08% 54.17 ± 4.17% 75.83 ± 0.10% 61.81 ± 0.69%Features Decision Tree - - 47.64 ± 0.89% 40.30 ± 4.19% 69.96 ± 7.82% 68.85 ± 8.93% 72.16 ± 5.62% 72.16 ± 5.62% 
SVM - - 77.60 ± 4.81% 70.85 ± 1.37% 85.04 ± 5.41% 54.17 ± 4.17% 87.73 ± 0.23% 71.53 ± 9.03%Both Random Forest - - 77.40 ± 0.54% 61.38 ± 8.07% 84.50 ± 0.68% 65.62 ± 9.38% 88.75 ± 0.14% 63.11 ± 3.55%Features Decision Tree - - 65.22 ± 0.52% 49.92 ± 2.86% 66.07 ± 6.15% 66.07 ± 6.15% 74.92 ± 2.86% 70.32 ± 7.46% 

O + ID + P O Phase O + ID Phases All Phases News Website Phases 
AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 

SVM 67.35 ± 1.97% 46.45 ± 0.99% 83.62 ± 0.29% 72.98 ± 4.80% 81.43 ± 0.31% 69.76 ± 0.88% 77.49 ± 2.67% 67.30 ± 6.11%Gaze Random Forest 48.00 ± 3.13% 52.88 ± 2.88% 76.20 ± 2.77% 68.33 ± 4.69% 77.61 ± 1.42% 75.05 ± 2.33% 73.94 ± 0.53% 61.80 ± 7.25%Features Decision Tree 43.07 ± 0.12% 43.07 ± 0.12% 60.05 ± 0.26% 60.05 ± 0.26% 70.46 ± 0.18% 70.46 ± 0.18% 63.19 ± 0.10% 56.55 ± 6.55% 
SVM - - 73.85 ± 3.92% 56.15 ± 6.15% 71.12 ± 1.89% 60.51 ± 4.57% 74.65 ± 4.72% 66.07 ± 10.12%Keystroke Random Forest - - 73.22 ± 0.21% 59.61 ± 5.07% 75.11 ± 0.29% 63.28 ± 4.18% 80.97 ± 3.99% 67.14 ± 3.50%Features Decision Tree - - 70.22 ± 3.55% 67.48 ± 2.80% 68.69 ± 1.55% 65.36 ± 4.87% 62.68 ± 2.36% 62.68 ± 2.36% 
SVM - - 84.42 ± 0.50% 73.68 ± 4.10% 81.43 ± 0.31% 72.73 ± 2.10% 76.70 ± 1.87% 61.11 ± 11.11%Both Random Forest - - 77.00 ± 0.78% 63.28 ± 4.18% 76.21 ± 0.02% 62.39 ± 7.85% 77.96 ± 1.76% 58.82 ± 4.27%Features Decision Tree - - 58.91 ± 0.18% 58.91 ± 0.18% 71.65 ± 1.37% 71.65 ± 1.37% 63.19 ± 0.10% 56.55 ± 6.55% 

Table 8: Comparison of eye movements for the webmail client / news website (only factors with statistically signifcant efects). 

Gaze Features Saccadic Duration 
Email News Wilcoxon Rank Rank 

Avg. Fixation Duration 
Webmail News Wilcoxon Rank Rank 

Saccadic Length 
Webmail News Wilcoxon Rank Rank 

Keyboard Fixations 
Webmail News Wilcoxon Rank Rank 

Reuse Passwords 4.25 8.80 Z=-2.22, P=.026 5.25 8.40 Z=-1.97, P=.048 4.75 8.60 Z=-2.10, P=.035 7.50 7.50 Z=-2.35, P=.019 

Table 9: Comparison of keystroke dynamics for the webmail client / news website (only factors with statistical signifcance). 

Keystroke Features Typing Duration 
Email News Wilcoxon Rank Rank 

Keystrokes Count 
Email News Wilcoxon Rank Rank 

Thinking Time 
Email News Wilcoxon Rank Rank 

Reuse Passwords 4.50 8.70 Z=2.17, P=.03 6.67 7.73 Z=-2.04, P=.041 4 7.90 Z=-2.34, P=.019 

webmail). Gaze enables predictions are possible from the beginning 
of the identifcation phase, providing a time advantage. 

6.6 Efect of Data Sensitivity on User Behavior 
To study the efect of content sensitivity on user behavior, we ran 
a Wilcoxon signed-rank test on users’ gaze features and keystroke 
features. We didn’t fnd a statistically signifcant efect of data 
sensitivity, neither on gaze behavior nor on keystroke dynamics. 
However, for reused passwords, we found signifcant efects of data 
sensitivity on behavior. 

Table 8 and 9 show the statistical signifcant features. For users’ 
gaze behavior, we found signifcant diferences for the saccadic 
duration, average fxation duration, saccadic length, and number of 
keyboard fxations between the webmail client (more sensitive) and 
the news website (less sensitive). For users’ keystroke dynamics, we 
found statistical diferences for users’ typing duration, keystrokes 
count, and thinking time. The results show diferences in users’ be-
havior between interfaces protecting data with diferent sensitivity, 
but only when registering reused passwords. 

7 DISCUSSION 
We presented an investigation of eye movement behaviour and 
keystroke dynamics to identify whether people reuse passwords, 
specifcally during the password registration phase. In the following, 
we discuss several insights gained from our study before discussing 
practical implications for authentication systems in the next section. 

7.1 Gaze is More Informative than Typing 
We found that a classifer based on gaze-related features (88% AUC 
for the interface-dependent classifer) outperforms a classifers 
based on typing behavior only (80% AUC). Note that the results for 
typing behavior are in line with prior work [28]. Furthermore, the 
accuracy can be improved by combining typing and gaze features 
in some cases. Prediction accuracy for keystroke features is higher 
only at a later stage – namely after users have typed the password. 

These fndings answer RQ1. More specifcally they show that it 
is not only possible to detect password reuse from these features 
but to also obtain rich additional information. 
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Figure 7: Results of the feature importance analysis across the tested feature groups for the email client. 
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Figure 8: AUC comparison for multiple the phases classifer between gaze and keystroke features for new and reuse passwords 
across interfaces. It shows that our addition of using gaze outperformed using keystrokes. 

7.2 Data Sensitivity Infuences Accuracy of 
Password Reuse Prediction 

We found that the sensitivity of the protected data afects the char-
acteristics of the chosen password and whether it is a new one or a 
reused one is refected in the user’s gaze data. More participants 
reused passwords for the news website than for the webmail client. 
This suggests that the more sensitive the protected information is, 
the more efort people put into their password and the less often 
they reuse passwords. This also leads to users’ behavior getting 
more distinguishable. This is revealed by the statistical analysis 
where, for the webmail client, most features (gaze and typing) were 
signifcantly diferent between reused and new passwords. In con-
trast for the news website we could not fnd signifcant diference 
in our collected data. 

7.3 Dissecting Password Registration Process 
Enriches Modeling and Prediction 

Contributing to the literature, we dissected the observation of pass-
word creation behavior into multiples phases. 

For the webmail client, we found that considering users’ behavior 
during the whole password generation (all phases combined) to 
detect password reuse leads to the best accuracy. In contrast, for the 
news website, we found that the identifcation phase better refects 
users’ behavior to detect password reuse. This suggests that people 
think about passwords during diferent phases of the registration 
process and that this thinking takes longer when protecting more 
sensitive data. We ran a Wilcoxon test to see whether the duration 
of the identifcation phase difered for new (MeanRank = 10.27) 

and reused passwords (MeanRank = 8.29) for the news website. 
We did not fnd statistical signifcant diferences (Z = −1.98, p > 
.05). This motivates a future study, striving to obtain a deeper 
understanding of when and how much people ‘think ahead’ when 
creating passwords. 

8 PRACTICAL IMPLICATIONS FOR THE 
DESIGN OF PASSWORD SYSTEMS 

Being able to identify password reuse before the end of the regis-
tration process, we envision interfaces to implement interventions 
ultimately leading to better passwords. We refect on the role of eye 
tracking, the design of interventions, the implications of user and 
interface characteristics on modeling, and on privacy implications. 

8.1 Ubiquitous Eye Tracking 
We believe the vision sketched in this paper to be timely as eye 
tracking is about to become ubiquitously available and to, in partic-
ular, gain relevance in usable security [29]. Access to gaze data is 
possible today in diferent ways. Firstly, there is laptop and desktop 
computers being equipped with dedicated eye tracking hardware. 
The fact that Apple bought SMI, one of the world’s leading manu-
facturers of eye tracking hardware suggests, that one of the next 
generations of Macbooks might come with integrated eye tracking. 
Secondly, advances in computer vision made it possible to perform 
appearance-based gaze estimation simply by means of analyzing 
the video feed of a web cam or smartphone cam [32]. Thirdly, eye 
wear (such as augmented reality glasses and head-worn devices) are 
envisioned to use gaze as a communication medium for everyday 
interactions [40], and thus could open doors for security use cases. 
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Figure 9: Interplay of Actual User Behavior and System Prediction (normalized confusion matrix). Optimally, a system would 
correctly predict whether a password is new or reused. In the frst case, no action would be needed – our approach predicts 
this case with around 70% accuracy. In the second case an intervention should be shown – we predict this case with around 
80% accuracy. Interestingly, gaze is particularly powerful for reused passwords, where a prediction based on keystrokes is only 
successful in about 56% of cases. 

Our approach could be implemented in various forms. Providers 
wishing to support users in choosing better passwords could inte-
grate the approach with their password registration interface (e.g., 
by accessing the webcam on a PC, by a smartphone app accessing 
the front-facing camera, or the built-in eye tracker of head-worn 
devices). A provider-independent solution would be a browser plu-
gin that accesses the camera and assesses users’ gaze data as they 
enter a website requiring the registration of a password. Finally, 
the approach could run as a service in eye wear, that activates 
when users are about to register a password and then assesses their 
physiological data. 

8.2 Creating Design Interventions 
A system that integrates the predictive model can provide several 
interventions based on the outcome of the prediction. Figure 9 
depicts four diferent cases based on two dimensions. The frst 
dimension is the actual behavior of the user, i.e. whether they used 
a new password or reused an old one. The second dimension is the 
prediction of the system, i.e. whether the system thinks the user 
created a new password or reused an old one. 

New user password + system predicts new password No ac-
tion is needed as this is the optimal behavior. 

Reused user password + system predicts reused password 
In this case, the system presents an intervention that opti-
mally motivates the user to rethink their choice. 

New user password + system predicts reuse Interventions 
by the system may lead to potential adverse efect to the 
users and should be avoided. This should carefully weigh 
of potential factors, e.g., the more invasive the intervention 
is (e.g., forcing the user to enter a new password), the more 
negative it can infuence user perception. Providing options 
to easily cancel this will become handy to the user. 

Reused user password + system predicts new Here, a sys-
tem would not intervene. Hence, the user would not be both-
ered, but potentially use an insecure password. This should 
be minimized for cases requiring high security. 

Based on the accuracy of the trained model, designers could verify 
how likely the above-mentioned cases are and decide, which inter-
ventions are suitable, regarding their level of invasiveness. Other 
factors could infuence this choice, e.g., how important it is that 
users do not reuse a password. Interventions could take various 
forms, as proposed in the literature: warnings, i.e. reminding users 
about security risks resulting from their behavior [33], attractors, 
i.e., modifcations in the UI that draw user’s attention to important 
information for decision making [12], or nudges, i.e. interventions 
that guide users to make benefcial suggestion [5, 19, 42]. 

8.3 Modeling 
Diferent factors can infuence the classifcation modeling. 

8.3.1 Ground Truth: Determining Password Reuse. The frst step to 
building predictive models is to collect behavioral data during the 
authentication process. The challenge during this data collection is 
to obtain a ground truth, i.e. whether or not users are creating new 
password or reusing an existing ones. Several alternatives exist. 
Firstly, users could be asked to provide this information. Yet, this 
creates an overhead for the user. Secondly, the created password 
could be compared to (the hashes of) passwords other users cre-
ated for the data or service the mechanism is protecting. Third, the 
created password could be compared to databases of leaked pass-
words. Afterwards, a model can be trained based on the labeled set 
of behavioral data, following the approach outlined in this paper. 

8.3.2 Influence of Typing Proficiency. In our study, we sampled 
among a University population where people were likely to have 
a rather high typing profciency. However, this might be diferent 
for other samples. Typing behavior is mainly a result of how long 
people type daily. In addition, typing and keystroke dynamics are 
infuenced by cognition, which difers when typing routine words 
(i.e. password reuse) as opposed to non-routine words (i.e. new 
passwords) [28]. Dhakal et al. [18] analyzed typing behavior in an 
online survey and they clustered typists into eight groups based 
on their typing performance, accuracy, rollover, and hand usage. 
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Given all this, we learn that user’s typing profciency plays a role 
to afect keystroke behavior and, hence, the accuracy of a classifer 
predicting password reuse. A user-dependent model is more suitable 
to capture individual characteristics and can enhance accuracy. 

8.3.3 Influence of Screen Properties. Users might access the same 
password registration interface on devices with diferent screen 
properties (e.g., a laptop vs. a large external monitor). While we 
maintained the same screen in our study for data consistency, other 
display types might be worth considering. In our analysis, we in-
spected the degree of infuence the features have on prediction 
accuracy. Fixation and registration durations are among the most 
prominent features. We expect the infuence of the screen proper-
ties on such relative features to be low. However, to further enhance 
the classifcation accuracy and take into account device-dependent 
features such as saccadic duration and path, it might be useful to 
consider screen-optimised classifers. 

8.3.4 Influence of Layout. Ideally, a model would make highly 
accurate predictions independent of the password registration in-
terface layout. In our study, we investigated two examples from 
the real world that we believe are representative for many of the 
layouts in use. However, other registration interfaces might look 
diferent and ask the user, for example, to provide information be-
yond credentials on the same page, such as an address or payment 
information. One might speculate whether users already display 
behavior related to password composition before working on the 
respective part of the form. If so, this would be interesting, as it 
gives a system employing our concept more time for an interven-
tion and also more typing and gaze data. At the same time this 
would require a new model to be trained. 

Future work could investigate, how exactly the registration inter-
face, in particular, the requested information and the layout (e.g., at 
which part of the registration interface the password is composed) 
infuence prediction accuracy. 

8.3.5 Influence of Interaction Modality. We hypothesize that difer-
ent interaction modalities will likely afect typing behavior, because 
input devices vary across systems (e.g., using a mechanical vs. a 
soft keyboard). The same is potentially true for gaze as diferent 
forms of eye trackers might be employed with diferent systems 
and typing behavior might infuence gaze behavior in a diferent 
way. At the same time, it is plausible that the implicit nature of eye 
movements could represent a more constant predictor of password 
reuse across systems. This should be pursued by future research. 

8.4 User Privacy 
Note that it is important to consider the potential privacy impli-
cations of using gaze data. There is an ongoing discussion on the 
need to use gaze data carefully. From gaze, information beyond 
password reuse can be inferred, including but not limited to the 
users’ interest, attention, fatigue, or sexual orientation (see Steil et 
al. [47] for an in-depth assessment of this topic). One could assume 
that users might be willing to share gaze data if it was to their 
beneft, in particular, in a security context. Yet, consent to collect 
and assess gaze data should not only be obtained by the provider 
of a password reuse identifcation system but be limited to this 
authentication procedure. 

9 FUTURE WORK 
Our work opens up many avenues for future research. Firstly, as 
mentioned above, one interesting direction is to investigate the 
infuence of the interface properties on the concept, in particular, 
the integration of password registration with the assessment of 
other information. Secondly, we plan create novel interventions that 
prevent password reuse or that nudge users towards rethinking 
their strategy. The choice for the intervention might be based on 
the prediction and could also take the likeliness for password reuse 
into account. We are also interested in understanding during which 
phases of the password registration process this is most efective. 
Thirdly, we plan to explore how concepts that are independent of 
the input device can be realized – for example, password reuse is 
detected through a mobile eye tracker and interventions are then 
provided as AR overlay or on a smart watch. A fnal direction 
for future research might be investigating additional types of user 
behavior and physiological states to predict password reuse. 

10 CONCLUSION 
We presented a novel approach for predicting password reuse. We 
separated password registration into diferent phases, namely the 
1) orientation phase, 2) identifcation phase, 3) password typing 
phase, and 4) confrmation phase. We then looked at how well 
password reuse can be detected in the diferent phases (separately 
and accumulated) based on gaze, keystroke dynamics and both. In 
addition, we compared two interfaces, meant to protect more and 
less sensitive data.Beyond showing that our approach improves 
the accuracy of prior work, we additionally demonstrated that 
prediction becomes now feasible throughout the entire password 
registration process. In addition, we provide insights how gaze and 
typing feature contribute to detecting password reuse and refect 
on the practical implications of our fndings. We hope to have 
provided a powerful approach for researchers and practitioners 
based on which novel interventions mitigating password reuse can 
be built. 
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